
www.manaraa.com

INDIGENOUS SOFTWARE DEVELOPMENT FOR CIVIL
AIRCRAFT SYSTEM

J.Jayanthi1, Manju Nanda2, Dr.M.R.Nayak3

1 Aerospace Electronics Division, National Aerospace Laboratories, Bangalore, India,
jayanthi@css.nal.res.in

2 Aerospace Electronics Division, National Aerospace Laboratories, Bangalore, India,
manjun@css.nal.res.in

3 Aerospace Electronics Division, National Aerospace Laboratories, Bangalore, India
mrnayak@css.cmmacs.ernet.in

ABSTRACT: Presently, there is a boom in the aviation industry. Until recently, India had
been buying all kinds of aircraft right from jumbo-jet to small executive class. But due to
the foresight of our scientists and to make our country march towards the goal of self
reliance in technology development, programs were initiated to set foot in the aviation
industry. Towards this effort, initially, the prestigious Light Combat Aircraft, Tejas was
started in the military sector and a trainer aircraft Hansa in the civil sector.
Subsequently, SARAS, a multi role aircraft was planned and currently the program is
going on successfully towards Limited Series Production and certification. Lot of
indigenous effort in various aircraft domains has taken place successfully for the SARAS
aircraft to provide the self-reliance. This paper talks about one of such success story of the
indigenous development of a safety critical software for civil aerospace application first
time in the country. The software is developed for the Stall Warning and the Aircraft
Interface Computer system which is an integral part of the SARAS avionics. The entire
software development process from the requirement phase to the certification phase is
described. The system is being used as part of the avionics for the country’s first 14-seater
aircraft. The success of the software development has been proven by the successful flights
of the SARAS aircraft and the analysis of the data collected during the flight tests proves
the correctness and reliability of the system. The software design, development and
qualification experience and the successful flight trials of the embedded system developed
as per the civil standard certification has initiated more design projects in the
organization saving a lot of money for the organization and the country providing a
premier base for achieving self reliance in software development for civil aviation.

1. INTRODUCTION
 Software is pervading in to every system possible currently. The main reason for this
shift towards software is adaptability. Gone are the days when software was a monolithic
block implementing few functionalities. Present day software is modular in nature and
very huge in size. Distributed nature of underlying hardware in some cases also has an
impact on the software. Aircraft industry is no exception to this trend. In the aviation
sector, now the shift is towards open system architecture where applications can be added
like plug and play. Due to the software predominance, lot of reconfigurability is attempted
with less number of hardware, making more effective use of the hardware. When role of
software is increasing by leaps and bounds, the design and development also becomes
more complex. The complexity in design and development also leads to difficulty in
verification and validation.

Developing software for aircraft differs from:

� Developing software for other embedded systems like entertainment
electronics which become obsolete fast as their customer is bothered about
new fashionable features rather than the safety of the equipment. Here the

Proceedings of the International Conference on Aerospace Science and Technology
 26 - 28 June 2008, Bangalore, India

karthik
Text Box
INCAST 2008-011

www.manaraa.com

schedule is entirely driven by market needs which often vary substantially in
a year.�
Developing regular computer software like a word processor where
business/life criticality are negligible but compatibility with older versions,
adhering to de facto standards and again meeting the market expectations is
more important. Here again the quality is compromisable.

� Banking software where there is a financial risk but unlike Aerospace
software, a risk concerning interfacing to external hardware is minimal. Also
Banking software may not be responsible (i.e., directly) for killing its user.

� In aircraft, risk for life (pilot, crew, passengers) as well as great financial
impact is there. Also the software once written does not change for 15 to 20
years and hence the stringent standard. Hence it requires that the avionics
software be produced such that it minimizes or removes the risk of a
malfunction or failure.

 The main difference between avionic software and conventional embedded software is
that the development process is required by law and is optimized for safety. To ensure
safety of airborne systems, RTCA has evolved a standard to be followed by all software
designers. DO-178B, Software Considerations in Airborne Systems and Equipment
Certification is guidance for software development published by RTCA. The FAA accepts
use of DO-178B as a means of certifying software in avionics. [1], [7]

2. INDIGENOUS AIRBORNE SOFTWARE DEVELOPMENT NEED AND
CHALLENGES

 Airborne software development and certification of use in aircraft is very expensive. The
increased cost factor compared to other software development is due to the effort required
to adopt the process as per DO 178B and the artifacts to be generated. DO 178B provides
only the guide lines to be followed and the DO 178B guide lines have to be customized for
each project. Initial cost of software development for airborne system is exorbitant if it is
done for the first time specific to an aircraft. Hence software development for systems
which depend on the aircraft structure and dynamics are very expensive when executed by
oversea vendors. Further, the process will not be established in our premises and for any
further changes however small the change may be, the vendor has to do at a high cost.

 Such difficulties are overcome by developing indigenously the software for the aircraft
system. The flexible nature of DO-178B's processes and entry/exit criteria make it difficult
to implement for the first time, because these aspects are abstract and there is no "base set"
of activities from which to work. The intention of DO-178B was not to be prescriptive.
Therefore, there are many possible and acceptable ways for a real project to define these
aspects. This can be difficult for the first time, if a company attempts to develop a civil
avionics system under this standard, and has created a niche market for DO-178B training
and consulting. [1]

 3. STALL WARNING/AIRCRAFT INTERFACE COMPUTER (AIC) SYSTEM
OVERVIEW

 The Stall Warning System/Aircraft Interface Computer System is one of the avionics
systems in the SARAS aircraft. The stall computation is highly dependent on the aircraft
structure and dynamics. It was decided to indigenously develop the software for the
system. A qualified hardware was identified for the computer. The following paragraphs
present the details of indigenous design and development.

Proceedings of the International Conference on Aerospace Science and Technology
 26 - 28 June 2008, Bangalore, India

www.manaraa.com

 The SARAS is a twin turbo-prop multi-role aircraft with air taxi and commuter service as
its primary roles. Two crew members, namely pilot and co-pilot operate the aircraft. It is
suitable for flying in all weather conditions and is equipped for day and night flying.

 The SWS/AIC architecture are shown in Figure 1. The SWS / AIC consists of two Angle-
of-Attack (AOA) sensors, an SWS/AIC computer consisting of two computing
subsystems mounted in a single chassis, one pitch trim actuator and one-stick shaker. The
aircraft is equipped with two AOA vane sensors, each with two independent position
detectors (potentiometer based) to provide AOA information to the two channels of
SWS/AIC computer. Each channel of the computer receives Analog, Discrete and ARINC
signal as input from the various sensors/switches/equipments interfaced to the computer.
The stall warning control laws, and firing tables are embedded as software in each
processor to announce stall condition to the pilot. The SWS/AIC provides AOA
information as an ARINC output to other systems including the primary displays to the
pilot/copilot on the EFIS, and the flight data recorder. [3]

Figure 1:SWS/AIC system Architecture

3.1 SOFTWARE CONSIDERATIONS
 The software development for any airborne system commences with the identification of
the efforts that is required to be put in for the software development. The efforts required
depend on the criticality of the function and its effect on the system and aircraft safety.
RTCA DO178B provides guidelines for assessing the level of effort required to meet the
safety levels required for the system under development. The level of effort required to
show compliance with certification requirements varies with the failure condition
category. This is the basis for establishing the software level.

ADC
 AHRS

PITCH TRIM

SHAKER

Ps
Pt

Tt

Ps
Pt
Tt

SERVO
ENGAGE/DISEN

COMMA
ENGAGE/DISEN

CAUTION
WARNING

SYSTEM

ARINC-

ARINC-

PILOT’S
CONTROL

WHEEL

COPILOT’S
CONTROL

WHEEL

AOA

SENSORS

EADI/PFD

(COPILOT SIDE)
WITH EFIS

CONTROL PANEL
& ALT SELECT

ARINC-

28 VDC ELEC.

SYSTEM

DISCRETE

(WOW, AOA Heat.

RAD

EADI/PFD (PILOT
SIDE) WITH EFIS

CONTROL PANEL
& ALT SELECTARINC-

ADC

AHRS

LG UNIT

FUEL

 POWER

DUAL SWS/AIC
PROCESSORS
(68060/68360)

� INPUT SIGNAL
MANAGEMENT

� STALL
ALGORITHM
PROC.

� AIC PROC
� OUTPUT SIGNAL

MGT.
� SERVO & MON.

CONTROL
� BIT

FLAP

SWITCHES
&INDICATO
RS IN
COCKPIT

28

28

Proceedings of the International Conference on Aerospace Science and Technology
 26 - 28 June 2008, Bangalore, India

www.manaraa.com

3.2 SOFTWARE DEVELOPMENT FOR STALL WARNING/AIRCRAFT
INTERFACE COMPUTER SYSTEM

 Stall is a condition in which the aircraft starts loosing height rapidly due to reduction in
the lift force. Once the aircraft enters stall, sometimes it may not be possible to come out
of it. A failure to announce an impending stall condition can lead to catastrophic condition.
Hence, aircrafts are fitted with a warning system to alert the pilot of an impending stall
condition. Stall Warning System is a safety critical system. The stall warning system
development is for a civil aircraft program. Hence the standard adopted for the software
development is RTCA DO 178B. The failure to announce the stall can lead to catastrophic
events. Hence the safety analysis carried out recommended software development efforts
as per level A of DO178B. The SWS/AIC computer detects the warning conditions for
take off, landing, baro altitude mismatch, hydraulic low pressure, pitch trim and VMO (over
speed) based on the logic for each warning generation. The SWS/AIC incorporates pitch
trim monitoring function and pitch trim actuation. The warnings are provided on a Caution
and Warning Panel as discrete outputs, which light the LEDs on the Panel and also
generate an audio warning. Stall warning also provides actuation of stick shaker in
addition to visual and aural warning. [3].

 The entire system functionality has been logically mapped in to software requirement
groups like external interface requirements, hardware initialization requirements, failed
mode requirements, real time control requirements, external input/output processing, cross
channel data link processing, Built In Test requirements, Functional requirements for
SWS, functional requirements of AIC, monitor requirements, error handling requirements,
performance requirements[2],[4].

 The various processes as per DO178B level A were established. The established
processes were adhered to strictly during the indigenous development. The software life
cycle process for SARAS-SWS/AIC software development is depicted in Figure 2.

Figure 2: SWS/AIC Software Life Cycle

3.3 CHALLENGES IN ESTABLISHING SOFTWARE DEVELOPMENT
STANDARDS
 The purpose of software development standard is to define the rules and constraints for
the software development processes keeping in view always the safety of the system. The

Software
Planning
Process

Software
Development
Process

Software
Verification
Process

System Test &
Flight Test
Support Process

Certification
Process

1. Release
of PSAC,
SDP, SVP,
SCMP,
SQAP
(Entry
criteria for
Develop-
ment
Phase)

1. Satisfies
DO-178B
Annex A
Table: A-2,
A-8 & A-9

1. Satisfies
DO-178B
Annex A
Table: A-3 to
A-7, A-8 &
A-9

1. Satisfies
DO-178B
Annex A
Table A-
3(Software
high level
requirements
Comply/trac
e-able to
system level
requirements

1. Satisfies DO-
178B Annex A
Table: A-8 & A-
9

2. Incorporated
all customer
needs.

3. No problem
reports are open
from previous
phases.

4. Audit from
certification
agency is
completed.

Proceedings of the International Conference on Aerospace Science and Technology
 26 - 28 June 2008, Bangalore, India

www.manaraa.com

software development standard includes the Software Requirements standards, the
Software Design standards, and Software Code standards. The selection of proper
programming language for the safety critical software development is very important. The
programming language must be such that it enforces strict discipline in programming. But
practically, there are other factors to be considered such as availability of development and
debug tools for the chosen language, availability of man power with proficiency in the
chosen language. Considering these factors, C was selected as the programming language.
Even though C is not ideally suited for development of safety critical software, a safe
subset of C can be formed by eliminating the usage of all problem causing features of C.
This can qualify ‘C’ for safety-critical applications. A coding style was also identified. The
identified subset of the language and the coding style adopted for the project form the code
standard for the project. [5]

 The software design standards stipulates how the software is described, the complexity
restrictions, design constraints, scheduling, exception handling and interrupt handling. For
SARAS SWS/AIC, the software design standards were established to ensure a high level
of determinism, testability and maintainability in the code design. The design effort was
carried out manually by means of diagrams. A complex design is augmented with a flow
chart for easy understanding. [5]

 It is highly essential that the chosen development environment does not introduce any
error during the development and qualification of the software. An in-house test rig was
developed and qualified to ensure that no ambiguity is introduced from the test set up. To
maintain the time schedule and reduce the human error, automated tools were used for
testing and configuration management. Figure 3 shows the qualified test rig developed for
the SWS/AIC system.

Figure 3: Qualified Test Rig used for SWS/AIC Testing

 Any airborne software cannot be installed in aircraft unless cleared by certification
agency. In addition to following the process, artifacts have to be generated at every stage
to provide the proof of compliance. Based on these artifacts, and the exposure provided by
the applicant who seeks the certification, the certification authority qualifies the software.
The main challenge in certification for the SWS/AIC was that the DGCA were involved
for the very first time in the qualification of civil aviation software. In addition, since the
product used COTS software, lot of additional tests had to be conducted to gain the
confidence of the certification agency. [6]

 In-spite of all testing on ground, the real performance of the system can be established
only during flight trials. The software development was completed, qualified by DGCA for
safety of flight and installed in the SARAS. Even though formal flight trials are yet to
commence, the system is being monitored as part of every flight test. The data collected
during flight is being analyzed. The main objective of this analysis is to fine-tune the
signal thresholds and verify the functional correctness of the system. The analysis helped
in fine-tuning the system behavior since we have the total control on the process and the
product. One such instance is the detection of mounting error in the angle of attack
sensors. Figure 4 shows the plot which enabled to detect the mounting error.

Proceedings of the International Conference on Aerospace Science and Technology
 26 - 28 June 2008, Bangalore, India

www.manaraa.com

Figure 4: AOA Plot generated from Flight Data

3.4 METRICS
 The software metrics for the SWS/AIC software is given in the following table.
Activity Metrics
Total number of modules developed 137
Average number of lines in each module 100 lines
Source lines of code 12000
Number of software problems raised 789
Low level testing phase 450
HSI testing Phase 339
Number of Functional Tests 22
Total number of test cases for HSI including all sub
tests

5000 plus

Size of executable code 336Kb
Total memory usage 16.80%
Time duration 30 months
Number of persons 6
No. of lines of code/day 2.2 sloc

4. CONCLUSION
 The indigenous development effort has given the team at NAL a very good exposure and
expertise of DO 178B software development process for level A. The available expertise
is being used for SARAS Autopilot and EICAS design and development leading to lot of
cost saving. The expertise can be used at institution level to provide a premier base for
achieving self reliance in software development for civil aviation.

5. ACKNOWLEDGMENTS
 The authors wish to acknowledge the Director, Head and the INCAST for providing an
opportunity to share the experience of indigenous software development.

REFERENCES
[1] WIKIPEDIA, http://en.wikipedia.org/wiki/DO178B
[2] “Software Considerations for Civil Certifications of Stall Warning System”, Technical Seminar on Advances

in Aerospace Sciences held in December 2003.
[3] SYSTEM REQUIREMENTS SPECIFICATIONS FOR SARAS SWS / AIC SYSTEM, DR-19A, June 2005
[4] Software Design Description for SARAS SWS/AIC system, DR-22, June 2005
[5] Software Development Plan for SARAS SWS/AIC system, June 2005, TB-04A
[6] Plan for Software Aspects of certification for SARAS SWS/AIC, Sep 2003, TB-03
[7] RTCA DO-178-B, Software Considerations in Airborne systems and Equipment Certification, Dec
1992

Proceedings of the International Conference on Aerospace Science and Technology
 26 - 28 June 2008, Bangalore, India

